Математика, как известно, "царица наук". Те, кто ей занимается всерьез, - люди особые - они живут в мире формул и цифр. В познании мира математики есть и практический смысл: за решение ряда задач институт Клэя готов дать миллион долларов.
1. Гипотеза Римана
Все мы помним ещё со школы ряд таких чисел, которые можно поделить только на само себя и на один. Они называются простыми (1, 2, 3, 5, 7, 11, 13, 17...). Самое большое из известных на сегодня простых чисел было найдено в августе 2008 года и состоит из 12 978 189 цифр. Для математиков эти числа очень важны, но как они распределяются по числовому ряду до сих пор до конца не ясно.
В 1859 году немецкий математик Бернхард Риман предложил свой способ их поиска и проверки, найдя метод, по которому можно определить максимальное количество простых чисел, не превышающих определенное заданное число. Математики подвергли проверке этот метод уже на полутора триллионах простых чисел, но никто не может доказать, что и дальше проверка будет успешной. Это не простые "игры разума". Гипотеза Римана широко используется при расчете систем безопасности передачи данных, поэтому ее доказательство имеет большой практический смысл.
2. Уравнения Навье-Стокса
Уравнения Навье-Стокса являются основой для расчетов в геофизической гидродинамике, в том числе для описания движения течений в мантии Земли. Используются эти уравнения и в аэродинамике. Суть их в том, что любое движение сопровождается изменениями в среде, завихрениями и потоками. Например, если лодка плывет по озеру, то от её движения расходятся волны, за самолетом образуются турбулентные потоки. Эти процессы, если упрощать, и описывают созданные ещё в первой трети XIX века уравнения Навье-Стокса. Уравнения есть, но решить их по-прежнему не могут. Более того, неизвестно, существуют ли их решения. Математики, физики и конструкторы успешно пользуются этими уравнениями, подставляя в них уже известные значения скорости, давления, плотности, времени и так далее. Если у кого-нибудь получится использовать эти уравнения в обратном направлении, то есть вычисляя из равенства параметры, либо докажет, что метода решения нет, тогда этот "кто-нибудь" станет долларовым миллионером.
3. Гипотеза Ходжа
В 1941 году профессор Кембриджа Вильям Ходж предположил, что любое геометрическое тело можно исследовать как алгебраическое уравнение и составить его математическую модель. Если подойти с другой стороны к описанию этой гипотезы, то можно сказать, что исследовать любой объект удобнее тогда, когда его можно разложить на составные части, а уже эти части исследовать.
Однако здесь мы сталкиваемся с проблемой: исследуя отдельно взятый камень, мы не можем сказать фактически ничего о крепости, которая построена из таких камней, о том, сколько в ней помещений и какой они формы. Кроме того, при составлении изначального объекта из составных частей (на которые мы его разобрали) можно обнаружить лишние части, либо напротив - недосчитаться. Достижение Ходжа в том, что он описал такие условия, при которых не будут возникать "лишние" части, и не будут теряться необходимые.
По материалам сайта obozrevatel.com